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Quantum Theory

Quantum theory

Mathematical framework at the core of quantum mechanics, independent of physical interpretation

Since inception in early 20th century:

• Successfully describes and predicts behaviour of subatomic particles

• Predicts Quantum weirdness contrary to classical theories and everyday physical experience

• Non-locality, contextuality, entanglement, superposition, incompatible measurements, …

Attitude shift since 1980s:

• Features, not bugs! How can we use them?

• Quantum information theory, computing, cryptography, machine learning, …



General Probabilistic Theory

Quantum theory is a general probabilistic theory

• Slightly different axiomatisation from classical probability theory (Hardy 2001)

• Quantum two-norm vs. classical one-norm probability

• Geometric interpretation of probability as the length of projections onto subspaces

Utilitarian modelling beyond the domain of physics

• Underlying processes are not inherently quantum, but share mathematical structure

• Non-determinism, non-separability, invasive measurements, contextuality, superposition, …

• Quantum modelling advantage → quantum computational advantage



Linear algebra and probability theory are widespread in artificial intelligence

Quantum game theory

• Quantum foundations

• Reinforcement learning

Generalised satisfiability

• Relaxed SAT

• Hamiltonian complexity

Tensor networks

• Numerical simulation

• Machine learning

Quantum NLP

• Language modelling

• Information retrieval

Quantum cognition

• Cognitive science

• Cognitive modelling



Quantum Picturialism

Quantum picturalism refers to the use of diagrams to represent and reason about essential features of

quantum theory. It aims to describe the logic of interacting quantum processes, such that diagrammatic

equations become the very foundation of quantum theory. - Coecke and Kissinger (2018)

Hilbert space formalism:

• Low-level and reductionist

• Isolated systems and their state

• Highlights deviations from classical theory

Diagrammatic language:

• High-level and constructivist

• Composite processes and their interaction

• Highlights features of quantum theory

Founded in a categorical quantum mechanics:

• Rigorous mathematical foundation in symmetric monoidal categories

• Emphasises connection to other types of systems and processes



String Diagrams

Symmetric Monoidal Category Objects Morphisms

Process Theory System-types Processes

Relations Sets Relations

Linear maps Vector spaces Linear maps

Classical probability Measurable spaces Markov kernels

Quantum maps (operators on) Hilbert spaces Completely positive maps

H

e

Φ

ρ
H

G
= (TrG ⊗ e) ◦ Φ ◦ δH ◦ ρ

ρ ∈ B(H)

δ(ρ) =
∑

ij |ii〉 〈i| ρ |j〉 〈jj|
Φ : B(H ⊗ H) → B(G ⊗ H)

TrG : B(G) → C
e : B(H) → C

∈ C

String diagram interpreted in the category of quantum maps



Quantum Model of Concepts

(Tull et al. 2023)



Cognitive science:

”Concepts are the glue that holds our mental world together.” - G. Murphy

• Essential to cognitive processes such as reasoning, decision-making, perception, language, …

But how to represent concepts?

Artificial intelligence:

• Create AI agents that reason and act more effectively, similar to how humans use concepts

• Ameliorate negative consequence of black-box connectionist models

How to automatically learn and reason with concepts?



Conceptual Space Theory

How to model cognitive representations?

Symbolic approach: High-level

• Representations express propositional relations between discrete objects

• Cognition is computation at the level of symbols

+ Compositional aspects of cognition

Conceptual spaces: Intermediate (Gärdenfors 2000)

• Instrumentalist level of representation

+ Bridge between symbolic and subsymbolic approaches

Subsymbolic approach: Low-level

• Associations between types information elements are the centre of representation

• Computation is a consequence of developing representations

+ Fine-grained similarity between representations



Quantum Conceptual Model

Conceptual

Space Theory

Quantum

Theory

Diagrammatic

Reasoning

Category

Theory

Convex conceptual spaces → Diagrammatic conceptual models → Quantum conceptual models

(Tull et al. 2023)



Quantum Conceptual Model

Hilbert space H ⊆ H1 ⊗ · · · ⊗ Hn and isometry U s.t.

Û

Û

=

H

H1

H

H. . . Hn

Quantum Instance

Pure normalised quantum state 〈h|

Û =

ĥ

H1

H

. . . Hn

H1 . . . Hn

ĥ1 ĥn

Quantum Concept

Quantum effect c

c

H



Concept testing = Quantum measurement (Born rule)

h

c

λ= ∈ R+

Semantic conceptual properties ↔ measurable quantum properties

• Partial order on concepts ↔ partial order on quantum processes

• Pure concepts at the bottom of the order ↔ pure quantum states

• Prototypical instances of concepts ↔ eigenstates of a quantum measurement

• Fuzzy, crisp, product, separable, ... concepts



Entangled Quantum Concepts

Given a set of pure concepts 〈c1| , . . . , 〈cn|, how can they be combined?

Classical combinations

c = |c1〉 〈c1|+ · · ·+ |c1〉 〈cn|

• Separable → No generalisation: c compares to each ci individually

Quantum combinations

c = (|c1〉+ · · ·+ |cn〉)⊗ (〈c1|+ · · ·+ 〈cn|)

• Entangled → Generalisation: c captures structural relations between domains

• Any quantum map f : H → G can be captured by a quantum concept c

cf

G

H

G

H

=



Reasoning with a Quantum Model of

Concepts



Symbolic and subsymbolic representations are complementary

Symbolic models:

+ Compositional

+ Human-interpretable

+ Generalise through reuse

− Hand-crafted

− Grounding problem

− Exhaustive combinatorial search

Subsymbolic models:

− Binding problem

− Uninterpretable

− Limited generalisation

+ Learnable from raw data

+ Grounded in data

+ Robust to noise

Can quantum conceptual models serve as practical intermediate representations for agents that

use both symbolic and subsymbolic reasoning?



Hybrid Quantum-Classical Variational Circuit

1. Classical preprocessing

2. Quantum state preparation

3. Measurement and post-processing

4. Classical optimisation

h

c

=

h

CNN

Encoder VQC

Concept VQC

φc

0 0. . .

. . . HnH1

ψ

H



Practical Blueprint for Quantum Concepts

Problem

On a quantum computer, only sub-causal effects can be realised as branches of causal

non-deterministic processes implemented by pure unitary maps

Solution

1. Scale c with r ∈ R+ such that c′ = rc is sub-causal

2. Embed c′ as branch 0 of a demolition POVM measurement

3. Apply the Ozawa dilation to the process to obtain an ONB measurement

4. Transform the resulting isometry U into a unitary U′

5. Postselect on the outcome 0 in the ONB measurement

=
c

H
H 0

0

Û′1

r



Experiment 1: Shapes Dataset

H ⊆ Colour⊗ Position⊗ Shape⊗ Size

Learn instance and property representations

with meaningful similarity

• Contrastive self-supervised learning of

cognitively separable domains using BCE

Loss

L(φ, ψ) = −
1

d

d∑
i=1

n∑
j=1

[
yij log cij(hi) + (1 − yij) log(1 − cij(hi))

]

Colour Position

Shape Size



Experiment 2: Rainbow Dataset

Property packing density

• On n qubits, 2n orthogonal properties can be
distinguished

• Single ONB measurement

• More than 2n properties cannot be
orthogonal

• Repeated POVM measurements

Colour



Experiment 3: Decoder Loss

Retain variational information within

representations

• Decoder network reconstructs instances with

an unsupervised penalty

L(φ, ψ, π) = L(φ, ψ)+
λ

d · 3 · 642

d∑
i=1

||hi−TransCNNπ(CNNψ(xi))||
2

Reconstructions of prototypical instances

(red, centre, triangle, small) (green, bottom, circle, large)

Colour Position

Shape Size



Experiments 4-5-6: Learning Concepts

Learn concept representations with meaningful similarity on (frozen) domains:

• Supervised learning with class imbalance and BCE loss

• Interpretable conceptual properties ↔ quantum circuit properties

Experiment 4: correlated concepts

• 100% accuracy with entangled concepts

Experiment 5: general concepts

• 100% accuracy with mixed concepts and

discarding (partial trace)

Experiment 6: logic operators in concepts

• 100% accuracy on conjunction and

disjunction within and across domains

General concept:

0

Û(φc
1)

. . .
0H1 Hn. . .

Û(φc
m)

...



Beyond Concept Recognition

Can the compositional features of the quantum concepts be used to solve abstract reasoning

problems with perceptual uncertainty?

Blackbird datasets

• Synthetic puzzles inspired by Raven’s Progressive Matrices

• Used by Hersche et al. (2023) to demonstrate vector-symbolic reasoning

• Complete missing panels in a 3x3 grid of abstract shapes

• Noisy variation in 2 continuous domains

• textitcolumns and row constraints



Experiment 7: Quantum Conceptual Model of Puzzles

G =

3⊗
i=1

3⊗
j=1

Hij with H ⊆ colour⊗ position

Learn factorised models

1. Learn domain representations of H

2. Learn row and column concepts

• 100% accuracy with general concepts

Learning from prototypical instances

• Replace training set with prototypes

• Mimicks human learning from idealised

cases

Without decoder loss

With decoder loss



Experiment 8: Composition of Quantum Concepts

Composition of quantum concepts

• String diagrams capture shared structures in

Boolean relations and quantum processes

• Similar to logic programs, complex concepts

are composed by reusing sub-concepts

Compose puzzle concept from row and column

concepts

• 100% concept classification accuracy

h22 h23h21 h32 h33h31h12 h13h11

crow crow crow ccolumn ccolumn ccolumn



Experiment 9: Quantum Concepts as Generative Processes

Quantum concepts as generative processes

• Quantum concepts encode joint probability
distributions

• Conditioning by process-state duality

• Marginalisation by discarding (partial trace)

• Quantum conceptual processes enable

generative instance sampling

Predicting the colour of an instance from the red

circle concept

• 100% prediction accuracy

• Marginal probability ∼ concept frequency

• Conditional probability ∼ structural relations

=

red circle

H4

H1

H2

h3

H3

h4h2

c

c

f

h

H2 ⊗ H3 ⊗ H4

H1

P(red circle) P(not red circle)

P(red) 0.31 0.19 0.50

P(not red) 0.01 0.49 0.50

0.32 0.68 1.00

P(red | red circle) = 0.98



Experiment 10: Reasoning with Quantum Concepts

Reasoning with quantum concepts

1. Automatically compose and apply a quantum

conceptual process to an incomplete puzzle

2. The prepared quantum state encodes a joint

probability distribution over missing panels

3. Sample and predict the most likely panels

Solve blackbird puzzles with quantum

concepts

• 100% prediction accuracy

• Tested on NISQ ibm_kyiv hardware
h hh hhh h

crow crow crow ccolumn ccolumn ccolumn

?

?



Simplified compiled generative concept circuit of the puzzle concept



Conclusion

Quantum theory is a general probabilistic theory beyond physics

• Quantum picturalism emphasises its compositional features and relates them to other

theories, leading to applications in cognitive science and AI

Quantum conceptual models unite quantum theory and conceptual space theory

Quantum concepts are generative intermediate representations capable of solving abstract

reasoning problems

Symbolic

• Compositional grounding

• Human-interpretable

• Generalise through reuse

Subsymbolic

• Grounded in perceptual data

• Learnable from raw data

• Robust to variation and uncertainty



x

f

f

f

x x x x x x x x

f f f f

f f

f

Ongoing work with Thomas Dooms

• Extending the study of compositionality to ML

• Compositionally-Interpretable Tensor Neural Networks

• Linear tensor networks ∩ non-linear neural networks

• Quantum-compositional ∩ mechanistic interpretability

Find out more

Quantum conceptual models + datasets

• github.com/WardGauderis/
Quantum-Conceptual-Model

Ward Gauderis

• ward.gauderis@vub.be

• Artificial Intelligence Research Group

Vrije Universiteit Brussel

github.com/WardGauderis/Quantum-Conceptual-Model
github.com/WardGauderis/Quantum-Conceptual-Model
ward.gauderis@vub.be
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